3.597 \(\int \frac{(a^2+2 a b x^2+b^2 x^4)^{5/2}}{x^{11}} \, dx\)

Optimal. Leaf size=251 \[ -\frac{a^5 \sqrt{a^2+2 a b x^2+b^2 x^4}}{10 x^{10} \left (a+b x^2\right )}-\frac{5 a^4 b \sqrt{a^2+2 a b x^2+b^2 x^4}}{8 x^8 \left (a+b x^2\right )}-\frac{5 a^3 b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}{3 x^6 \left (a+b x^2\right )}-\frac{5 a^2 b^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^4 \left (a+b x^2\right )}-\frac{5 a b^4 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}+\frac{b^5 \log (x) \sqrt{a^2+2 a b x^2+b^2 x^4}}{a+b x^2} \]

[Out]

-(a^5*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(10*x^10*(a + b*x^2)) - (5*a^4*b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(8*x^
8*(a + b*x^2)) - (5*a^3*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(3*x^6*(a + b*x^2)) - (5*a^2*b^3*Sqrt[a^2 + 2*a*b
*x^2 + b^2*x^4])/(2*x^4*(a + b*x^2)) - (5*a*b^4*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(2*x^2*(a + b*x^2)) + (b^5*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]*Log[x])/(a + b*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0682964, antiderivative size = 251, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {1112, 266, 43} \[ -\frac{a^5 \sqrt{a^2+2 a b x^2+b^2 x^4}}{10 x^{10} \left (a+b x^2\right )}-\frac{5 a^4 b \sqrt{a^2+2 a b x^2+b^2 x^4}}{8 x^8 \left (a+b x^2\right )}-\frac{5 a^3 b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}{3 x^6 \left (a+b x^2\right )}-\frac{5 a^2 b^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^4 \left (a+b x^2\right )}-\frac{5 a b^4 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}+\frac{b^5 \log (x) \sqrt{a^2+2 a b x^2+b^2 x^4}}{a+b x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2)/x^11,x]

[Out]

-(a^5*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(10*x^10*(a + b*x^2)) - (5*a^4*b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(8*x^
8*(a + b*x^2)) - (5*a^3*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(3*x^6*(a + b*x^2)) - (5*a^2*b^3*Sqrt[a^2 + 2*a*b
*x^2 + b^2*x^4])/(2*x^4*(a + b*x^2)) - (5*a*b^4*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(2*x^2*(a + b*x^2)) + (b^5*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]*Log[x])/(a + b*x^2)

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}}{x^{11}} \, dx &=\frac{\sqrt{a^2+2 a b x^2+b^2 x^4} \int \frac{\left (a b+b^2 x^2\right )^5}{x^{11}} \, dx}{b^4 \left (a b+b^2 x^2\right )}\\ &=\frac{\sqrt{a^2+2 a b x^2+b^2 x^4} \operatorname{Subst}\left (\int \frac{\left (a b+b^2 x\right )^5}{x^6} \, dx,x,x^2\right )}{2 b^4 \left (a b+b^2 x^2\right )}\\ &=\frac{\sqrt{a^2+2 a b x^2+b^2 x^4} \operatorname{Subst}\left (\int \left (\frac{a^5 b^5}{x^6}+\frac{5 a^4 b^6}{x^5}+\frac{10 a^3 b^7}{x^4}+\frac{10 a^2 b^8}{x^3}+\frac{5 a b^9}{x^2}+\frac{b^{10}}{x}\right ) \, dx,x,x^2\right )}{2 b^4 \left (a b+b^2 x^2\right )}\\ &=-\frac{a^5 \sqrt{a^2+2 a b x^2+b^2 x^4}}{10 x^{10} \left (a+b x^2\right )}-\frac{5 a^4 b \sqrt{a^2+2 a b x^2+b^2 x^4}}{8 x^8 \left (a+b x^2\right )}-\frac{5 a^3 b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}{3 x^6 \left (a+b x^2\right )}-\frac{5 a^2 b^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^4 \left (a+b x^2\right )}-\frac{5 a b^4 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}+\frac{b^5 \sqrt{a^2+2 a b x^2+b^2 x^4} \log (x)}{a+b x^2}\\ \end{align*}

Mathematica [A]  time = 0.0279921, size = 85, normalized size = 0.34 \[ -\frac{\sqrt{\left (a+b x^2\right )^2} \left (a \left (200 a^2 b^2 x^4+75 a^3 b x^2+12 a^4+300 a b^3 x^6+300 b^4 x^8\right )-120 b^5 x^{10} \log (x)\right )}{120 x^{10} \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2)/x^11,x]

[Out]

-(Sqrt[(a + b*x^2)^2]*(a*(12*a^4 + 75*a^3*b*x^2 + 200*a^2*b^2*x^4 + 300*a*b^3*x^6 + 300*b^4*x^8) - 120*b^5*x^1
0*Log[x]))/(120*x^10*(a + b*x^2))

________________________________________________________________________________________

Maple [A]  time = 0.212, size = 82, normalized size = 0.3 \begin{align*}{\frac{120\,{b}^{5}\ln \left ( x \right ){x}^{10}-300\,a{b}^{4}{x}^{8}-300\,{a}^{2}{b}^{3}{x}^{6}-200\,{b}^{2}{a}^{3}{x}^{4}-75\,{a}^{4}b{x}^{2}-12\,{a}^{5}}{120\, \left ( b{x}^{2}+a \right ) ^{5}{x}^{10}} \left ( \left ( b{x}^{2}+a \right ) ^{2} \right ) ^{{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^4+2*a*b*x^2+a^2)^(5/2)/x^11,x)

[Out]

1/120*((b*x^2+a)^2)^(5/2)*(120*b^5*ln(x)*x^10-300*a*b^4*x^8-300*a^2*b^3*x^6-200*b^2*a^3*x^4-75*a^4*b*x^2-12*a^
5)/(b*x^2+a)^5/x^10

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(5/2)/x^11,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.48737, size = 149, normalized size = 0.59 \begin{align*} \frac{120 \, b^{5} x^{10} \log \left (x\right ) - 300 \, a b^{4} x^{8} - 300 \, a^{2} b^{3} x^{6} - 200 \, a^{3} b^{2} x^{4} - 75 \, a^{4} b x^{2} - 12 \, a^{5}}{120 \, x^{10}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(5/2)/x^11,x, algorithm="fricas")

[Out]

1/120*(120*b^5*x^10*log(x) - 300*a*b^4*x^8 - 300*a^2*b^3*x^6 - 200*a^3*b^2*x^4 - 75*a^4*b*x^2 - 12*a^5)/x^10

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac{5}{2}}}{x^{11}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**4+2*a*b*x**2+a**2)**(5/2)/x**11,x)

[Out]

Integral(((a + b*x**2)**2)**(5/2)/x**11, x)

________________________________________________________________________________________

Giac [A]  time = 1.15287, size = 169, normalized size = 0.67 \begin{align*} \frac{1}{2} \, b^{5} \log \left (x^{2}\right ) \mathrm{sgn}\left (b x^{2} + a\right ) - \frac{137 \, b^{5} x^{10} \mathrm{sgn}\left (b x^{2} + a\right ) + 300 \, a b^{4} x^{8} \mathrm{sgn}\left (b x^{2} + a\right ) + 300 \, a^{2} b^{3} x^{6} \mathrm{sgn}\left (b x^{2} + a\right ) + 200 \, a^{3} b^{2} x^{4} \mathrm{sgn}\left (b x^{2} + a\right ) + 75 \, a^{4} b x^{2} \mathrm{sgn}\left (b x^{2} + a\right ) + 12 \, a^{5} \mathrm{sgn}\left (b x^{2} + a\right )}{120 \, x^{10}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(5/2)/x^11,x, algorithm="giac")

[Out]

1/2*b^5*log(x^2)*sgn(b*x^2 + a) - 1/120*(137*b^5*x^10*sgn(b*x^2 + a) + 300*a*b^4*x^8*sgn(b*x^2 + a) + 300*a^2*
b^3*x^6*sgn(b*x^2 + a) + 200*a^3*b^2*x^4*sgn(b*x^2 + a) + 75*a^4*b*x^2*sgn(b*x^2 + a) + 12*a^5*sgn(b*x^2 + a))
/x^10